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Diffraction imaging by focusing-defocusing:
An outlook on seismic superresolution

V. Khaidukov1, E. Landa2, and T. J. Moser3

ABSTRACT

Diffractions always need more advertising. It is true that
conventional seismic processing and migration are usually
successful in using specular reflections to estimate subsur-
face velocities and reconstruct the geometry and strength
of continuous and pronounced reflectors. However, cor-
rect identification of geological discontinuities, such as
faults, pinch-outs, and small-size scattering objects, is one
of the main objectives of seismic interpretation. The seis-
mic response from these structural elements is encoded
in diffractions, and diffractions are essentially lost during
the conventional processing/migration sequence. Hence, we
advocate a diffraction-based, data-oriented approach to
enhance image resolution—as opposed to the traditional
image-oriented techniques, which operate on the image af-
ter processing and migration. Even more: it can be shown

that, at least in principle, processing of diffractions can lead
to superresolution and the recovery of details smaller than
the seismic wavelength.

The so-called reflection stack is capable of effectively
separating diffracted and reflected energy on a prestack
shot gather by focusing the reflection to a point while the
diffraction remains unfocused over a large area. Muting
the reflection focus and defocusing the residual wavefield
result in a shot gather that contains mostly diffractions.
Diffraction imaging applies the classical (isotropic) diffrac-
tion stack to these diffraction shot gathers. This focusing-
muting-defocusing approach can successfully image faults,
small-size scattering objects, and diffracting edges. It can
be implemented both in model-independent and model-
dependent contexts. The resulting diffraction images can
greatly assist the interpreter when used as a standard sup-
plement to full-wave images.

INTRODUCTION

Diffractions are the abandoned stepchildren of traditional
seismic processing and imaging. Routine practice uses specular
reflections to estimate the subsurface velocity distribution and
reconstruct the geometry of strong and smooth reflectors—
most often with success. At the same time, however, correct
identification of geological discontinuities, such as faults, pinch-
outs, and small-size scattering objects, is an important problem
in interpretation of seismic data. Local structural and litho-
logical elements in the subsurface of a size comparable to the
wavelength are usually ignored during processing and identi-
fied only during interpretation. Unfortunately, the reliability
of such identification is generally low. It is precisely the seismic
response from these structural elements that is encoded in the
diffracted wavefield.
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The importance of diffracted/scattered waves has long been
recognized (Krey, 1952; Hagedoorn, 1954). Landa et al. (1987)
and Kanasewich and Phadke (1988) proposed to construct
a common-diffraction section by stacking the signal along a
diffraction hyperbola instead of the conventional common-mid
point (CMP) hyperbola. Papziner and Nick (1998) extracted
diffraction energy from ground-penetrating radar (GPR) data
to detect small objects in georadargrams. Landa and Keydar
(1998) used shallow diffractions to survey the digging of a tun-
nel. Goldin et al. (2000) proposed a Gaussian beam decom-
position for detection of diffraction objects. In his provoking
sequence of papers, Neidell (1997) distinguished between re-
flective and diffractive contributions to the wavefield, and rec-
ognized the diffractive component as a key ingredient in es-
tablishing resolution—or even superresolution (the recovery
of details smaller than the seismic wavelength). An illustration
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of resolution improvement by means of the diffractive com-
ponent in vertical seismic profile (VSP) data imaging can be
found in Moser et al. (2000). An early report (Zavalishin, 1982)
suggested an interesting, but until now untested, application
of diffractions in 4D/time-lapse reservoir studies. Imaging of
small scattering objects by means of diffractions has obvious
applications in environmental and archeological studies.

In this paper, we promote diffraction imaging as a supple-
ment to the conventional reflection imaging to be used in
mainstream processing and imaging. We propose an imaging
algorithm that is intentionally diffraction biased, instead of
reflection biased. The crucial point here is to find a domain
where the diffracted and reflected waves are well separated
from each other [see Nemeth et al. (2000), where an exten-
sive review on signal separation methods is given]. Our ap-
proach is based on focusing reflected waves to their imaginary
source points and then muting them from the full wavefield.
Reflection focusing can be achieved by the so-called reflection-
stack type of migration. This suggestion was raised by Timoshin
(1978), but received only little attention since then (Zavalishin,
2000). Because of different moveout properties (or integration
curves), diffraction and reflection focusing are fundamentally
different. Whereas the first is a standard tool in migration to
stack energy along elementary diffractions at their respective
elementary sources, together making up a reflecting surface,
the second stacks energy along real reflection events and trans-
ports it to mirrored points on the opposite side of the reflector.
Therefore, the reflection-stacked energy is typically concen-
trated twice as deep as the diffraction-stacked energy, and we
have, in principle, obtained a separation. Based on this idea,
the outline of our algorithm is (1) apply the reflection stack
to the full-wave shot gather, (2) mute areas with strongly fo-
cused energy, (3) reconstruct the shot gather, now with mostly
diffracted energy, and (4) apply the diffraction stack to this
diffracted shot gather.

We develop this algorithm in detail for the macromodel in-
dependent case, and indicate briefly how it can be implemented
when an accurate velocity model is available. The potential of
the proposed diffraction imaging is demonstrated on two syn-
thetic models, and on the Pluto data set (which is also synthetic,
but of considerable complexity, simulating a Gulf of Mexico
deep-water subsalt prospect). We start with a review of geo-
metrical aspects of diffractions and elaborate on their relation
to seismic superresolution.

DEFINITIONS AND GEOMETRICAL ASPECTS

The general validity conditions of ray theory (Červený, 2001)
are a useful and commonly accepted framework to define
diffractions and reflections, and to distinguish between them.
Seismic waves can be modeled by ray theory in the high-
frequency limit or, equivalently, if the wavelength is much
smaller than any characteristic length scale in the propagation
medium. In particular, Snell’s law and specular reflection ade-
quately describe backscattering from a discontinuous bound-
ary in the medium provided that the wavelength is small com-
pared to the radius of curvature of the boundary. Therefore,
we define a reflection as the seismic response from a suffi-
ciently smooth interface. On the other hand, if the curvature
of the interface increases and its radius becomes of the or-
der of the wavelength itself, ray theory is no longer valid. We

define the seismic response from a strongly curved interface
that does not satisfy the ray validity conditions as a diffrac-
tion. With such a definition, we examine two important special
cases. First, if the interface curvature locally grows to infinity,
an edge or tip appears, and the diffractions on it are edge or
tip waves (Klem-Musatov, 1994). Second, if the size of an iso-
lated scattering object of arbitrary shape shrinks to zero, the
backscattered waves from it are diffractions. The dynamical
behavior of these types of waves is different, but we consider
only kinematical aspects of diffractions in this paper, so they
do not need to be distinguished. In any case, it is important to
stress that the ray-theory criteria are only qualitative, and that
there is no sharp distinction between reflections and diffrac-
tions. Rather, they are extreme cases of the same backscat-
tering phenomenon, depending on frequency and character-
istic lengths of the discontinuity. We call diffraction imaging
the classical diffraction stack, but applied to shot gathers in
which reflections have been (ideally) removed, or at least
attenuated.

Let us recall some basic geometrical properties relevant for
the reflection focusing presented below (Keller, 1962; Trorey,
1970; Berryhill, 1977; de Bazelaire, 1988). As a rule of thumb,
reflections and diffractions from a discontinuity at the same
depth differ in moveout and the position of the traveltime
apex in the shot gathers. This can be understood by consid-
ering reflections as originating from an imaginary source that
is mirrored with respect to its reflector. In the simplest case of a
plane horizontal topography, a plane horizontal reflector, and
a constant velocity in between, the reflection traveltime curve
is a hyperbola with its apex at zero offset. If the source moves
to a next location, its mirror point and the reflection hyperbola
move along with it unchanged, so that all reflection shot gathers
are identical. On the other hand, the traveltime curve of a point
diffractor is a hyperbola with its apex fixed above the diffractor.
If the source moves to a next location, the diffraction hyperbola
does not move laterally, but only vertically. Hence, diffractions
can appear anywhere on the shot gathers. The moveout is con-
trolled by the position of the asymptotes of the hyperbola. The
slopes of the asymptotes are the same for a given medium, but
for the plane horizontal reflector they start at time zero, while
for the point diffractor they start at a nonzero time, equal to the
propagation time from source to diffractor. Diffraction curves
have steeper dips and exist over a more narrow range of offsets
in a shot gather than reflection curves. These properties apply
strictly only for a horizontal reflector model and a point diffrac-
tor at the same depth. However, for more general geometries,
where moveout can be nonhyperbolic, they are still qualita-
tively valid and useful. Again, depending on frequency content,
there is no sharp distinction between reflections and diffrac-
tions, and their properties. Figure 1 illustrates the geometrical
properties for the simple cases of the plane horizontal reflector
and point diffractor, but also for such intermediate cases as a
dipping and curved reflector. The differences in moveout have
a direct impact on the focusing properties discussed below. The
property that, contrary to reflections, diffraction apices are lat-
erally invariant with respect to source location can be exploited
in a multisource data acquisition: if the diffraction is too close
to a reflection to be isolated in one shot gather, then there is
a likely greater separation in another one. For many shots, we
can even benefit from a statistical reduction of the reflective
component. This is important for edge diffractions, which are
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often locally tangent to reflections from the same discontinuity
(Klem-Musatov, 1994).

DIFFRACTIONS AND SUPERRESOLUTION

The main goal of diffraction imaging is to increase image
resolution, delineate faults and edges, and facilitate interpre-
tation. Several approaches exist aimed at enhancing the resolu-
tion on poststack and postmigration seismic images. Removal
of the wavelet effect by deconvolution is a common practice,
which often reveals structural details masked in the (band-
limited) seismic image. Gersztenkorn and Marfurt (1999) ex-
tract coherence measures from a neighborhood of an image
point. Hu et al. (2001) propose a deblurring filter, Fehmers
and Höckers (2003) a structure-oriented filter. Such techniques
indeed improve the interpretability of the seismic image.

We take a more conservative viewpoint here. The Rayleigh
criterion poses a limit on the resolution to be extracted from a
recorded backscattered wave (Born and Wolf, 1959; Chen and
Schuster, 1999). If no a priori information is available in the
scatterer geometry, no details smaller than half the wavelength

are recoverable. This limit is imposed by the band-limited na-
ture of the far-field scattered wave and the general impossi-
bility to extrapolate outside its frequency band. Wave prop-
agation acts as a low-pass filter. Hence, deconvolution-type
techniques may transform the seismic image into an image
that has more detail and, indeed, may be easier to interpret.
However, the reliability of these details is to be considered
low, and uncertainty measures are not available. Below the
Rayleigh limit, no definite answers can be given as to location,
dip, and curvature of a discontinuity, nor even to topologi-
cal properties, such as connectivity. Instead, there is room for
more or less arbitrary interpretation, not related to or justified
by the physics of the wave propagation. Even worse, migra-
tion artifacts, due to under- or overmigration, are a common
problem in seismic images. The artifacts usually manifest them-
selves as apparent edges (Figure 2). Without further informa-
tion, it is impossible to identify migration artifacts, and they
will be mistaken for structural details (especially by the auto-
mated methods mentioned above). In other words, an image-
driven approach to resolution enhancement is inherently
limited.

Figure 1. Geometry of reflection and diffraction. S, R denote source and receiver locations,
respectively; S’ the imaginary reflection source; A the reflection/diffraction hyperbola apex;
and t the traveltime. (a) Reflections on a horizontal plane reflector. (b) Reflections on a strongly
curved reflector. (c) Reflections on a dipping reflector. (d) Diffractions on a point diffractor
(denoted by D).
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Superresolution, the recovery of subwavelength scale details
in a seismic image, is however achievable under certain ide-
alized circumstances. Full-band information of the scatterer
can be recovered from the far-field scattered wavefield if out-
of-band extrapolation is possible, which, in turn, is possible
if the size of the scatterer itself is of the order of the wave-
length (Bertero et al., 1997). Several algorithms are available
to perform this out-of-band extrapolation (Gerchberg, 1974).
These algorithms may be difficult to implement in many prac-
tical cases of seismic imaging. The important implication is,
however, that if the full wavefield is decomposed in reflection
and diffraction components, the diffractive components can be
identified as carriers of superresolution information coming
from scatterers of subwavelength scale. Isolating diffractions
from the full wavefield and imaging them separately is there-
fore a first step in establishing superresolution of structural
details—and this is the objective of this paper.

As for the case of full-wave imaging, the reliability of diffrac-
tion imaging depends on the accuracy of the migration velocity,
and uncertainties can be assessed by checking the flatness of
common-image gathers (just as for full-wave images, diffrac-
tion images should be consistent for all offsets). Moreover,
diffraction images do not suffer from apparent edges caused
by migration artifacts; the artifacts in Figure 2 are not caused
by diffractive energy, but by caustics due to traveltime trip-
lication, so a diffraction analysis will help to unmask them.
Thanks to these properties, diffraction imaging stands out in
contrast to the image-driven approach discussed above, as an
objective tool for high (or super-) resolution image analysis
and, above all, justified by the physics of wave propagation.
As such, diffraction images are to be seen as a complement to
reflection images and should be made available for the inter-
preter as an aid to reliable high-resolution interpretation.

Separating diffractions from the full wavefield requires an
unconventional approach to seismic processing. Many steps in
traditional time processing [such as velocity analysis, normal
moveout (NMO), stack] are, implicitly or explicitly, designed to
detect and image specular reflection events without honoring
the special geometry of (real) diffractions. For instance, NMO

Figure 2. Over- and undermigration of a simple syncline, due
to velocity errors. For a too low overburden migration velocity,
the image shifts upward; for a too high velocity, it shifts down-
ward, occupying equidistant curves to the syncline. Migration
artifacts, indicated by arrows, appear as diffraction edges.

and stack to zero offset suppress energy aligned along diffrac-
tion hyperbolas with apices at nonzero offsets. Also, dip move-
out (DMO) explicitely deals with dipping reflectors, whereas
diffractors have no well-defined dip. For these reasons, in or-
der to benefit as much as possible from diffractions and the
information they convey, we analyze them in the prestack do-
main and before migration. Diffraction imaging is, therefore,
essentially a data-driven approach to image resolution.

In the following section, we present an approach to attenuate
reflections and enhance the diffractive component. While we
acknowledge that the choice of an imaging principle is relevant
for resolution (Levin, 1998), we leave this out of the discussion
in this paper. In many implementations, the migration integral
kernel is derived assuming locally plane reflectors (Beylkin,
1985), or using a high-frequency or stationary-phase approxi-
mation (Docherty, 1991), and therefore biased towards spec-
ular reflections. Emphasizing reflectivity also has implications
for illumination of, for example, steep reflectors, which we will
not discuss here. We use the classical diffraction stack, with an
unbiased, isotropic integral kernel. In fact, as we argue below,
even the classical diffraction stack is biased towards reflections.

REFLECTION FOCUSING AND
DIFFRACTION IMAGING

A key observation is that the classical diffraction stack deals
with reflections and diffractions in a fundamentally different
way. We consider the diffraction stack V for a subsurface loca-
tion x in the form (Tygel et al., 1996)

V(x) ∼
∫

dξ
∫

dt U(ξ, t)δ(t − td(ξ, x)), (1)

where U(ξ, t) represents the recorded seismic data, for an
arbitrary source-receiver configuration parametrized by the
generic vector ξ(Hubral et al., 1996), and td( ξ, x) is the diffrac-
tion traveltime curve (ξ is integrated over the measurement
aperture, and the time t over the relevant time interval). The
stack 1 incorporates an isotropic weighting factor, affecting the
amplitude only, which we do not specify here. The diffraction
traveltime td( ξ, x) is the propagation time from source to re-
ceiver via a hypothetical diffraction point x.

For reflections from continuous interfaces, the physical prin-
ciple justifying the diffraction stack (equation 1) is that (1) a
reflector can be composed of an infinitely dense set of point
diffractors, (2) its reflective response is the superposition of el-
ementary diffractions from these points, and (3) the reflection
traveltime curve is the envelope of the elementary diffraction
traveltime curves. In this case, the elementary diffractions are
merely mathematical idealizations, destined to interfere con-
structively along reflectors, and destructively elsewhere, due to
Huygens’ principle. They are abstractions and cannot be ob-
served independently. When the recorded data U(ξ , t) include
the full reflected wavefield, the envelopes of the elementary
diffraction curves lie tangent to the reflection curves, and the re-
flections are imaged tangent to their corresponding reflectors.

For real diffractions originating from truncated reflectors,
edges, or small-scale scattering objects, the situation is com-
pletely different: (1) real diffractors are not the infinitesimal
components of a larger smooth interface, but rather stand
alone; (2) their diffractive response does not contribute con-
structively to a larger seismic event, it is not an abstraction
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and is really observable; and (3) their traveltime curves do not
contribute to an envelope curve. Their amplitude, however, is
considerably smaller than that of reflections, so they are likely
to be hidden in the diffraction stack (equation 1). To prevent
the diffractive component from being lost, it is necessary to
separate it from the full wavefield and image it separately. This
is the essence of diffraction imaging.

In order to accomplish the separation, we propose to focus
the reflections to their own imaginary sources (as defined in
the section ”Definitions and geometrical aspects”). First, we
give an outline of the general idea, and in the following sec-
tion we discuss the implementation. The reflection focusing
is illustrated in the simple case of Figure 3 (Timoshin, 1978;
Zavalishin, 2000). The classical diffraction stack 1 maps re-
flections (Figure 3, left) to curves whose envelopes constitute
the reflector, and diffractions (Figure 3, right) to single points
that are usually too weak to be distinguished. By replacing the
diffraction traveltime curve by a reflection time curve tr (ξ , x),
the stack 1 becomes a reflection focusing operator,

V R(x) ∼
∫

dξ
∫

dt U(ξ, t)δ(t − tr (ξ, x)), (2)

which focuses the reflection to the much deeper point zim, while
the diffraction remains unfocused. Here, the different move-
outs of the reflection and diffraction hyperbolas play an es-
sential role, as discussed above under geometrical aspects. We
refer to V R(x) as the reflection focus image. Since the reflection
imaginary sources are much deeper than the corresponding re-
flectors, the depth range of V R(x) is typically twice that of the
classical diffraction stack V(x).

If the reflection traveltimes tr (ξ , x) are calculated correctly,
application of the reflection stack (equation 2) to a common-
shot gather will focus the reflected energy from a continuous

Figure 3. Reflection focusing (after Zavalishin, 2000). The
wavefronts of both reflected and diffracted waves are restored
by conventional migration at an instant t = z/v, where v is the
subsurface seismic velocity. The wavefront of the extrapolated
diffracted wave is focused to a point (right), whereas the wave-
front of the extrapolated reflected wave is tangent to the reflec-
tor. Focusing of the reflection would occur at the instant t = 0
at the imaginary source point zim(left).

smooth interface to its imaginary source point. On the other
hand, diffracted energy from edges or small-scattering objects
at the same depth will be unfocused over large areas. Thus, in
contrast to the diffraction stack 1, the reflection stack (equa-
tion 2) is a transformation of the shot gather to a domain where
reflections and diffractions can be separated. In this reflection
focus domain, we mute V R(x) in areas with strongly focused
energy and denote it V R

0 (x). To V R
0 (x) , which only contains the

residual diffracted energy, we apply the defocusing operator

U D(ξ, t) ∼
∫

dx V R
0 (x)δ(t − tr (ξ, x)). (3)

Here, tr (ξ, x) is again the reflection traveltime, and the inte-
gration of x is over the whole image. The right-hand side of
equation 3 is a Kirchhoff-type demigration integral (Santos
et al., 2000). For the same set of traveltime curves, the focusing
and defocusing integral are dual to each other—we stress this
by keeping the δ-factors in equations 1–4.

Depending on the quality of the reflection focus and the
amount of muting, the new data set U D(ξ, t) contains mainly
diffractions. The final step, which is the actual diffraction imag-
ing, is then more or less trivial and consists of applying the orig-
inal diffraction stack (equation 1) to the diffracted wavefield
U D(ξ, t):

V D(x) ∼
∫

dξ
∫

dt U D(ξ, t)δ(t − td(ξ, x)). (4)

Unlike the integral in expression 1, the integral in expression 4
involves a superposition of only real existing diffractions and
not of elementary diffractions. Also, it is essential to note that
the integral in expression 4 is indeed the classical isotropic
diffraction stack, without a kernel biased towards specular re-
flections or high-frequency backscattering.

IMPLEMENTATION

It remains to find or define a proper reflection traveltime
curve tr (ξ, x) that optimally focuses the reflective wavefield
component. This is a nontrivial task. In situations where the
velocity model is accurately known (for instance, in the frame-
work of prestack depth migration), the reflection time can be
found by ray tracing (similarly to the conventional diffraction
time td):

tr (ξ, x) = T(x, xr )

td(ξ, x) = T(xs, x)+ T(x, xr ) (5)

where xs and xr are source and receiver locations, x the diffrac-
tion or reflection focusing point, and T the ray-based travel-
time (possibly multivalued). If the migration velocity is ade-
quate enough to focus elementary diffractions to elementary
diffraction points, it is also capable of focusing reflections to
imaginary reflection source points (which, as noted before, are
located twice as deep). The sequence of applying expression 2,
muting, applying expression 3, and finally applying expression 4
is then relatively easy to implement. Diffractivity analysis as-
suming an accurate velocity model from first break times was
presented for VSP by Moser et al. (2000).

Often, the assumption of a good velocity is not justified. This
does not impede reflection focusing, however. The dual char-
acter of the focusing and defocusing integrals, even for general
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traveltime-curve systems or a wrong velocity, implies that an
accurate velocity is not required to reconstruct the shot gather
after parts of the reflection focus image have been muted. In
fact, the degree of attenuation of reflected energy depends only
on the quality of the focusing and the amount of muting. It is
important that the reflection energy is focused, and not where it
is focused. Moreover, because of the absence of a sharp distinc-
tion between diffractions and reflections, a complete removal
of reflections is often not feasible. In cases of an inaccurate,
wrong, or unknown velocity model, which are in fact all con-
ceptually equivalent, the focusing has to be accomplished by
means of an additional focusing parameter. In all cases, an in-
complete focusing implies that the reflection energy is not re-
duced to a point, but rather to a sharp localized caustic, which
can be dealt with, to a certain extent, by muting.

We concentrate here on the case of an unknown subsur-
face model and implement the reflection focusing in a macro-
model independent context. We take the so-called homeo-
morphic imaging common shot point approximation (HICSP)
(Keydar et al., 1996) as a starting point to approximate the
reflection traveltime curve. Restricted to common-shot gath-
ers, the homeomorphic imaging principle assumes that the re-
flected wave can be locally approximated by a spherical wave
with the HICSP reflection curve. In two dimensions, it reads

tr (h, x) = t0+
(√

R2
0 + 4R0h sinβ0 + 4h2− R0

)/
v, (6)

where v is the near-surface velocity (assumed constant and
known), h half the source-receiver offset, t0 the arrival time
at zero offset, and R0 and β0 the radius and emergence angle
of the spherical wave, respectively. As a function of h, equa-
tion 6 is a shifted hyperbola, with R0 and β0 as free parameters.
We take them as polar coordinates with respect to the source
point of an imaginary reflection source point x= (xim, zim). The
point x is not defined in the actual depth domain, but in an aux-
iliary depth model with constant velocity v and parametrized
by (xim, zim); we refer to this as a pseudodepth domain. Upon
substituting R2

0 = x2
im+ z2

im and sinβ0= xim/R0, the reflection
curve reads

tr (h, x) = t0 +
(√

(xim + 2h)2 + z2
im −

√
x2

im + z2
im

)/
v.

(7)

An essential ingredient of homeomorphic imaging is to take t0

independent of R0 in order to allow waves of all curvatures to
arrive at all times. In the most general case, a reflection focus
image has to be constructed for each t0 separately:

V R(t0; xim, zim) =
∫

dh U(h, tr (h, x)), (8)

where tr (h, x) is given by equation 7. For each t0, the optimal
R0 and β0 are found by a grid search for the maximum of |V R|
in the pseudodomain (xim, zim)—the reflection focuses to one
point, or in a localized caustic, depending on the hyperbolicity
of the real reflection event. This search is equivalent to the
multifocusing or common reflection surface (CRS) search for
optimal R0 and β0 (Landa et al., 1999a), except that we keep
the entire image V R, including the nonoptimal parts, to be able
to reconstruct the shot gather. Indeed, V R is muted by zeroing
strongly focused energy (located around the maximum of |V R|)
and taking care of a smooth transition to unmuted regions.

The result is V R
0 (t0; xim, zim). The inverse to equation 8 is the

defocusing integral

U D(t0; h, t) =
∫

dxim

∫
dzim V R

0 (t0; xim, zim)

× δ(t − tr (h, x)), (9)

where tr (h, x) is again given by equation 7. For each
t0,U D(t0; h, t) is a shot record in which the (hypothetical) re-
flection event passing through t0 has been optimally attenuated;
reflections with zero-offset times other than t0 will be less than
optimally attenuated. Again in the most general case, the pro-
cedure 8–9 has to be repeated for each t0 and the final diffrac-
tion shot gather U D(h, t) has to be composed from the indi-
vidual U D(t0; h, t), each time suppressing one reflection event
at a time. In practical cases, however, this can be restricted to
t0s associated with strong events. In the examples given in this
paper, we restrict to one single t0, enabling a simultaneous op-
timal focusing of most reflections in the shot gathers; this is
sufficient for models with a limited velocity range.

EXAMPLES

First, we consider a situation where the observed wavefield
consists of reflected and diffracted waves that interfere in the
shot domain. The model (Figure 4) consists of a circular re-
flector with radius 2600 m located at 1000-m depth, and three
embedded point scatterers. The overburden has a constant ve-
locity of 2500 m/s. Fifty-one shot gathers with 128 receivers
in each were generated using a Born modeling scheme. Shot
and receiver increments are equal to 40 m and 20 m, respec-
tively. Figure 5 shows one of the shot gathers. A strong reflec-
tion event masks weak scattered waves. (Note that all plots
are displayed in their own dynamic range, without clipping or
gain control.) Figure 6 shows the depth image obtained by a
Born inversion/migration scheme for the 51 shot gathers. As
expected, the scatterers are almost invisible on the image due to
their weak amplitude. Only minuscule phase anomalies seem
to indicate that the reflector is not completely smooth. For a re-
liable detection of the scatterers in the seismic image, we would
like to construct the image using exclusively diffracted energy
from these objects. We do this by applying the sequence of ap-
plying the focusing integral 8, muting, applying the defocusing

Figure 4. Model with circular reflector (radius 2600 m) located
at 1000-m depth, with constant velocity v= 2500 m/s. Three
point scatterers are located directly on the reflector.
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integral 9, and applying expression 4 for one optimal t0 per
shot gather (for example, t0= 1.24 s gives the best reflection
focusing for the shot gather of Figure 5). Figure 7a shows the
reflection focus image obtained from the focusing integral 8.
The main reflection energy is concentrated in the vicinity of
the imaginary source at xre f l = (1750 m, 1650 m), where |V R|
has a maximum (found by a simple grid search). The energy
from the scattering points is smeared out over the reflection
focus image and appears in the form of “diffraction smiles.”
These are much more visible after a muting is applied (Fig-
ure 7b, again plotted in its own dynamic range). The reflection
focus image is muted by multiplying with a functionµ(r0, r1, r ),
where r =‖x− xre f l‖, µ= 0 for r < r0 < r1, µ= 1 for r0 < r1 < r ,
and smoothly and monotonically increasing from 0 to 1 for
r0 < r < r1, so that r0 controls the amount of muting and r1− r0

controls the transition to unmuted regions. To verify the accu-
racy of the defocusing operator 9, we first test it on the unmuted
reflection focus image. Figure 8 displays the focused-defocused
shot gather on top of the original gather (from Figure 5), to-
gether with a zoom on the central traces, which shows a very
close fit between the two. We then obtain the diffracted shot
gathers by applying the defocusing integral 9 to the muted
reflection focus image. The result, for the same shot gather,
is displayed in Figure 9. Here, the wavefield contains mostly
diffracted waves and some residual reflection energy. We re-
peat the process of focusing-muting-defocusing for all 51 shots.

Figure 5. One of the common-shot gathers over the model
of Figure 4. A strong reflection event masks weak diffracted
waves. Note: all plots are displayed in their own dynamic range
without automatic gain control.

Figure 6. Image obtained by prestack depth migration of full-
wave shot gathers. Scatterers are almost invisible due to their
weak amplitudes.

Figure 7. (a) Reflection focus image in pseudodepth domain,
corresponding to the shot gather of Figure 5. (b) Muted reflec-
tion energy in reflection focus image of (a). Diffraction smiles
become visible.

Figure 8. Defocusing test: focused-defocused shot gather (with-
out muting) compared with original gather from Figure 5 (top),
plus zoom on central traces (bottom).
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The last step of the diffraction imaging procedure consists of
migration of all 51 diffracted shot gathers (using the classical
diffraction stack 4). Figure 10 shows the result of the migra-
tion. It is clear that all three scatterers are well imaged and
can be reliably detected from interpreting the image. Two ad-
ditional diffraction points located at the left and right sides of
the figure are caused by edge waves. The reflection interface is
attenuated compared to that in the depth image of the original
data (Figure 6).

The next example deals with detecting edges in laterally het-
erogeneous media. Three layers separated by mildly curved
faulted interfaces comprise the model shown in Figure 11, with
constant velocities equal to 2500, 2700, and 2500 m/s. The faults
have a displacement of 20 m. Again 51 shots were generated
using a Born modeling scheme, with 128 receivers per shot
and a shot and receiver increment of 40 m. Since the wave-
field has frequencies up to 60 Hz, the fault displacements are
smaller than half the seismic wavelength and, therefore, below
the Rayleigh resolution limit. Figure 12 shows one of the shot
gathers. As in the previous example, waves diffracted from the
fault edges are one or two orders of magnitude weaker than
reflected waves from the interfaces. The depth image of the
model shown in Figure 13 obtained by prestack Kirchhoff mi-
gration with a known velocity model allows interpretation of
the strong reflectors (honoring their velocity contrast), but the
image at the fault edges is more confused and does not allow

Figure 9. Diffraction shot gather from Figure 5, after focus
(Figure 7a), mute (Figure 7b), and defocus.

Figure 10. Depth migration of diffraction shot gathers (com-
pare with Figure 6). Three point scatterers are well imaged and
can be reliably detected from interpreting the image. Two addi-
tional diffractors located at the left and right sides of the figure
are caused by the edges of the interface.

reliable localization of the fault edges and their displacement.
We attenuated reflections on the shot seismograms by focusing
the reflected waves to their imaginary source locations, mut-
ing the areas of dominant reflection energy, and calculating the
residual wavefield by an inverse focusing operator. One of the
resulting seismograms is shown in Figure 14. Diffracted waves
from the faults are clearly seen on the seismogram while re-
flected waves are weakened. We used these diffraction seismo-
grams for depth imaging (by equation 4); the result is shown
in Figure 15. All fault edges are clearly imaged and can be
easily interpreted (compared to Figure 13). In fact, on close

Figure 11. Two-layer model with curved and faulted interfaces.
Velocities within the layers are constant and equal to 2500 m/s
and 2700 m/s. The fault offset is 20 m.

Figure 12. One of the shot gathers over Figure 11.

Figure 13. Depth migration of full-wave shot gathers.
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inspection (Figure 16) several subwavelength details can be
distinguished (if only qualitatively), such as the fault displace-
ment. At each fault edge, we see an X-shaped pattern, where
the phase shift with respect to the full-wave image correctly
predicts the orientation of the fault and the velocity contrast.
As in the previous example, additional diffractors at the left
and right sides of the figure are connected to the edges of the
model.

Our last example deals with a 2D acoustic data set referred
to as Pluto. The 2D model has been designed to replicate the
structural and stratigraphic seismic response from a Gulf of
Mexico deep-water subsalt prospect (Stoughton et al., 2001).
Several variously shaped salt bodies and faulting are incorpo-
rated into the model. The seismic data released by the Subsalt
Multiples Attenuation and Reduction Technology Joint Ven-
ture (SMAART JV) was generated using a finite-difference
acoustic waveform modeling scheme. The aim in this study
was fault imaging in the shallow part of the model (depth 500–
3000 m) above the central salt body. Five main faults can be
identified within this model range. Figure 17 illustrates the re-
sults of prestack depth migration on the target zone using the
correct velocity model. As expected, salt geometry and the fault
positions are imaged to their correct positions. Five arrows
indicate the termination of reflectors on four different fault
planes. However, due to illumination effects, the fault planes
themselves are hardly distinguishable; in fact, the only evi-
dence they leave are the jumps in the reflectors. We applied our

Figure 14. Shot gather of Figure 12 with reflections suppressed.

Figure 15. Depth migration of diffraction shot gathers. Fault
positions as well as reflector edges are clearly visible (and easy
to interpret) compared to Figure 13.

diffraction imaging scheme to the shot seismograms. Figure 18
shows one of the common-shot gathers for the full wavefield.
First, we focused reflections to their imaginary source positions
and attenuated them by muting the areas of energy concentra-
tion. Figure 19a shows the reflection focus image of Figure 18,

Figure 16. Zoom on full-wave image (top, zoom from
Figure 13) and diffraction image (bottom, zoom from Fig-
ure 15) at (1000 m, 1200 m). The diffraction image allows for
a much better and less ambiguous interpretation of the fault
geometry than the full-wave image.

Figure 17. Depth migrated image from Pluto data set. Fault
planes (shown by arrows) are hard to distinguish.
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Figure 19b the muted version. The defocusing operator then
constructed the residual wavefield, containing mostly diffrac-
tions. The resulting residual seismogram is shown in Figure 20.
Figure 21 shows the results of depth migration applied to the
residual common-shot seismograms (again using the classical
diffraction stack 4). All five fault planes shown by arrows in
the figure are clearly imaged and can be easily interpreted.
Strongly curved elements of the salt body are also well defined
in the image. Due to the discrimination on moveout, a consis-
tent multiple in the image of Figure 17 (extending from depth
2000 m at the left to about 1500 m at the right) is inadvertently
suppressed in Figure 21. It is also interesting to note that numer-
ous diffraction patterns along the smoothed interfaces appear.
These are certainly caused by the grid representation used in
the finite-difference data modeling and strong diffracted wave-
field created by the modeling scheme. The ability to detect
these artificial numerical scatterers illustrates once more the
potential of the focusing-defocusing approach to diffraction
imaging.

DISCUSSION AND CONCLUSIONS

Diffractions offer a different perspective on seismic image
resolution and the way it is achieved. Traditional process-
ing/migration regards the diffractive wavefield component as
noise and ignores the structural information it conveys; in fact,
one can argue that migration does not even need real diffrac-
tions to produce images of the same quality. First, during pro-
cessing (NMO/DMO, multiple attenuation, velocity estima-
tion, stacking), events not originating from a smooth and strong

Figure 18. One of the full-wave shot gathers.

reflector are usually filtered out. Second, conventional migra-
tion algorithms are designed in a way which emphasizes specu-
lar reflections. Kirchhoff migration kernels are usually derived
based on a high-frequency or stationary-phase approximation.
Even the classical isotropic diffraction stack favors constructive

Figure 19. (a) Reflection focus image from Figure 18 in
pseudodepth domain. Several focuses from different reflec-
tion events are visible. (b) Mute of reflection focus image of
(a). Diffraction energy remains.
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interference of reflections to isolated scatterings. The result is
that images tend to highlight reflectors and obscure nonreflect-
ing structures, such as small faults, edges, pinch-outs, and small
scattering objects. It is precisely this detailed structural infor-
mation that is the main objective of seismic interpretation. To
improve the resolution and enhance details of the size of the
seismic wavelength, several techniques have been proposed

Figure 20. Diffraction shot gather from defocusing the muted
reflection focus image of Figure 19b. The wavefield contains
mostly scattered waves (compare with Figure 18).

Figure 21. Depth migration of diffraction shot gathers. All fault
planes (shown by arrows) are clearly imaged and can be easily
interpreted. Note the existence of numerous grid diffraction
patterns on top of the salt body, which are detected by the
focusing-defocusing algorithm.

and are being applied in the industry. These techniques are im-
age oriented, in the sense that they operate on the image after
processing and migration. They are successful, to a certain de-
gree, in revealing details that are masked in the seismic image.
However, if no discrimination is made between the different
types of waves involved in the imaging, the resolution is es-
sentially limited by the Rayleigh criterion. Any detail smaller
than half the seismic wavelength cannot be interpreted in an
objective, unambiguous way. Apart from the resolution limit,
the image-oriented techniques do not distinguish between real
structural details and false edges created by processing arti-
facts or an incorrect migration velocity. In such situations, they
accomplish little more than image cosmetics. As a result, in
some geophysical applications, the value of the seismic image
is unfairly depreciated in favor of other sources of information
(well data or geological evidence). We take a few steps back in
the processing/migration sequence and advocate a data-driven
approach to image resolution, using diffractions. Diffractions
are reliable indicators of small structural characteristics, and
distinguish between real diffracting edges and migration arti-
facts (quality checked by common-image gathers). Also, under
idealized circumstances (such as a low noise level), they allow
recovery of subwavelength details. This makes diffractions the
key to seismic superresolution.

Due to their geometrical properties, diffractions are best
studied and analyzed in the prestack domain and before mi-
gration. The main challenges of diffraction analysis are that
diffractions are usually tangent to reflections, and that they are
typically one or two orders of magnitude weaker. To separate
them from the full wavefield, we propose to exploit different
moveout properties and focus reflections to their own imagi-
nary source points. We do this by constructing the (hypothet-
ical) reflection traveltime curve for each event crossing zero
offset in the shot gathers and stacking the energy along it. The
resulting reflection focus image in a pseudodepth domain con-
tains sharply focused reflection points, with diffraction energy
smeared out over large areas. We mute the reflection energy
and apply a defocusing integral to construct the diffracted shot
gather. The classical diffraction stack is then applied to the
diffraction shot gathers.

We note here that, once the reflection focus image has been
established, muting-defocusing is not the only option to obtain
the diffraction shot gather. An alternative is to find the re-
flection focus point, apply a median filter along the associated
reflection traveltime curve in the shot gather, and subtract the
filtrate from the full wavefield. The situation is very similar to
standard τ -p multiple attenuation, and both options have their
own advantages (Landa et al., 1999b). When the reflection and
diffraction events strongly interfere in the time domain, but
separate well in the pseudodepth domain, filtering and sub-
traction will damage the signal. On the other hand, defocusing
usually suffers from weak linear artifacts (visible in Figure 9).
Which alternative is best in a given situation is still a topic of
ongoing research.

We emphasize that the crux of the reflection focusing is that
it is not important where the reflection focuses, but only that
it focuses. Another point to keep in mind is that there is no
sharp distinction between reflections and diffractions, so that
there is no complete removal of reflection events, only atten-
uation. Our proposed focusing-muting-defocusing approach
can be implemented both in a macrovelocity dependent and
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independent context. In situations where an accurate velocity
model is available (such as in the framework of prestack depth
migration), the reflection traveltime curve can be found by ray
tracing. Depending on the accuracy of the velocity model, or its
focusing capacity, it will focus reflections to points or to sharp
localized caustics. A proper setting of the muting parameters
ensures that the reflection attenuation is sufficient for the sub-
sequent diffraction imaging. Accurate velocity knowledge is
not available in many cases, so we concentrate in this paper
on the macromodel independent context. Lack of velocity in-
formation has two implications: an extra focusing parameter
is needed in the form of the zero-offset time t0, and an as-
sumption on the reflection traveltime curve is needed. Here,
we use the homeomorphic imaging principle, which takes the
reflected wavefronts as spherical and their associated travel-
time curves as hyperbolic. Depending on the hyperbolicity, the
reflection energy will again focus to one point, or rather to a
sharp localized caustic, again to be handled by a proper set-
ting of muting parameters. In the model-independent context,
we typically need to focus and attenuate each major reflection
event crossing zero offset separately. In models with a limited
velocity range, as presented in this paper, this can be simpli-
fied to one single t0, enabling optimal focusing of all reflections
events simultaneously. Our implementation can be generalized
to 3D and different acquisition geometries without further the-
oretical complications: similar types of focusing and defocusing
integrals can be set up, the search for maximum reflection focus
becomes a 3D search, and the muting function has to be ex-
tended. While we do not address the CPU issue in detail in this
paper, the cost of our diffraction imaging may be estimated to
be of the order of three times the prestack depth imaging [con-
sisting of (1) focusing the shot gathers, (2) defocusing the muted
reflection focus images, and (3) imaging the diffraction shot
gathers; the grid search is relatively cheap compared to these
steps], which we think is an acceptable price for the increased
resolution and reliable interpretability of diffraction images.

There is a great potential for research and development in
diffraction imaging, and many issues are still to be investigated.
First of all, the relation to resolution and superresolution needs
to be further explored. In the current paper, we considered only
kinematic properties; the technique may be modified to include
true-amplitude modeling, so that a measure of diffractivity be-
comes available next to the traditional reflectivity. Also, we
do not make here a distinction between scattered waves from
small objects and edge diffractions; however, their different
dynamical behavior can be analyzed and exploited in more re-
fined algorithms. The phase content of the diffraction image can
be analyzed to extract more information on fault edges, their
orientation, and their relation to reflectors. In three dimen-
sions, diffractions differentiate between edges and tips (Klem-
Musatov, 1994). In 4D (time-lapse) studies, diffractions can
help to monitor the displacement of the oil/gas–water contact
during production.

In any case, we have shown that diffraction imaging is feasi-
ble, and that it produces reliable images with detail unachiev-
able by conventional means. We strongly believe that such im-
ages should be made available to the interpreter as a standard
supplement to full-wave seismic images.

Diffractions have been the stepchildren of traditional pro-
cessing/imaging. However, if they receive the attention they
deserve, we will be able to see the invisible.
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