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ABSTRACT

Based on the energy conservation principle, we derive a scalar imaging condition for
anisotropic elastic wavefield migration. Compared to conventional imaging conditions
that simply correlate displacement components or potentials from source and receiver
wavefields, the proposed imaging condition does not suffer from polarity reversal,
which degrades the image quality after stacking over shots. Our imaging condition
also accounts for the directionality of the wavefields in space and time, leading to the
attenuation of backscattering artifacts, which commonly appear in elastic reverse-time
migration images in the presence of strong model contrasts. In addition, our new imag-
ing condition does not require wave-mode decomposition, which demands significant
additional cost for elastic wavefields in anisotropic media. To properly image struc-
tures, we rely on the anisotropy parameters used in migration, as one would do for
any other imaging condition. The application of our imaging condition is suitable for
arbitrary anisotropy. We show how the energy imaging condition works by perform-
ing numerical experiments and we compare its quality to conventional counterparts by
simulating complex geological settings, such as dipping layers characterized by tilted
transverse isotropy (TTI).

Key words: anisotropy, imaging condition, conservation of energy, multicomponent,
elastic imaging, reverse time migration

1 INTRODUCTION

We frame our paper in the context of (1) an elastic Earth,
supporting the propagation of both compressional and shear
waves, and (2) an anisotropic Earth, causing wave phenom-
ena such as phase velocity variation with the propagation di-
rection. Although the seismic exploration industry has used
the acoustic and isotropic assumptions for a long time, the
search for more authentic images and subsurface information,
such as fracture distribution, encourages multicomponent elas-
tic wavefield imaging (Denli and Huang, 2008; Yan and Sava,
2011b; Duan and Sava, 2014a; Rocha et al., 2016b). At the
same time, data acquired with larger offsets and the increasing
number of acquired azimuths enables one to properly account
for the influence of anisotropy in order to image complex ge-
ological structures (Mikhailov et al., 2001; Lu et al., 2010; Li
et al., 2012; McGarry and Qin, 2013; Hu et al., 2014; Wang
et al., 2014).

Wavefield imaging, using either the acoustic or elastic
wave equation, is implemented in two steps: (1) wavefield ex-
trapolation in the subsurface, using recorded data and an Earth
model, and (2) the application of an imaging condition to ex-
tract the Earth’s reflectivity from the extrapolated wavefields

(Claerbout, 1971; Dellinger and Etgen, 1990; Yan and Sava,
2009). If a two-way elastic wave equation is used in the wave-
field extrapolation step, followed by the zero-lag crosscorrela-
tion of the wavefields as the imaging condition, the procedure
is called elastic reverse time migration (ERTM) (Chang and
McMechan, 1987; Hokstad et al., 1998). In recent years, many
elastic imaging conditions have been proposed by exploiting
the multicomponent aspect of the elastic wavefield and, for
the isotropic case, by possibly decomposing the displacement
fields into P- and S-wave potentials (Etgen, 1988; Zhe and
Greenhalg, 1997; Yan and Sava, 2007; Yan and Xie, 2010;
Duan and Sava, 2014a). For anisotropic media, wave-mode
decomposition during wavefield extrapolation is feasible but
requires additional computational cost and robust techniques
(Yan and Sava, 2009, 2011a; Cheng and Fomel, 2013). The
correlation of the displacement fields for each component of
the source and receiver wavefields is the most common imag-
ing condition for elastic wavefields in anisotropic media. For
3-D imaging, this imaging condition potentially generates nine
images with a mixture of wave modes, and this large set of im-
ages poses serious difficulties for interpretation.

Another problem exhibited by displacement imaging
conditions is polarity reversal, which occurs if one correlates
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displacement components from opposite directions. The main
disadvantage of polarity reversal is the degradation of image
quality after stacking over experiments (Balch and Erdermir,
1994; Yan and Sava, 2008). Similar to wave-mode decompo-
sition, polarity reversal corrections can be implemented with
techniques that require additional information about the surb-
surface (Duan and Sava, 2014a).

Compared to the acoustic case, elastic imaging involves
another issue in addition to polarity reversal. Injection of elas-
tic data into a model (implementing wavefield backpropaga-
tion) creates non-physical (or “fake”) wave modes during the
wavefield extrapolation step, leading to artifacts after the ap-
plication of an imaging condition (Yan and Sava, 2007; Ravasi
and Curtis, 2013; Duan and Sava, 2014a). These artifacts de-
grade image quality, and might be present even after stacking,
masking weak reflections in the final image (Duan and Sava,
2014b). This type of artifacts caused by displacement injection
into the model is beyond the scope of this paper.

Analogous to the acoustic case, a second type of artifact
appears if the elastic model contains sharp interfaces. In this
case, at the wavefield extrapolation step, the sharp interfaces
in the Earth model create backscattered reflections, and at the
imaging condition step, conventional correlation of the wave-
fields creates low-wavenumber artifacts in the image (Youn
and Zhou, 2001; Yoon and Marfurt, 2006; Guitton et al., 2007;
Denli and Huang, 2008; Chen and Huang, 2014; Diaz and
Sava, 2015; Rocha et al., 2016b). Ideally, the backscattering
artifacts should be attenuated during imaging, without the use
of post-imaging artificial filters such as the Laplacian operator
(Zhang and Sun, 2009).

Considering these issues, we seek to facilitate interpreta-
tion and provide a concise description of the subsurface struc-
tures by defining an imaging condition that yields an attribute
of the Earth’s reflectivity into a single image without wave-
mode decomposition, without polarity reversal, and without
backscattering artifacts. Our proposed imaging condition is
formulated using the energy conservation principle (Yu, 1964;
Ben-Menahem and Singh, 1981; Webster, 2000; Rocha et al.,
2016a), and extends the previous work on isotropic elastic
wavefield imaging (Rocha et al., 2016b).

2 THEORY

We use energy conservation laws analogous to the acoustic
and isotropic elastic cases (Rocha et al., 2016a,b) to derive a
function that measures the energy of a wavefield in anisotropic
media. This energy function also allows us to form an imaging
condition for extrapolated elastic wavefields from sources and
receivers.

2.1 Elastic wave equation

For an anisotropic medium enclosed by a physical domain
Ω ⊂ R3, we can write the equation of motion with no external
sources (Aki and Richards, 2002):

ρÜ = ∇ · t
¯
. (1)

In equation 1, the displacement field is a function of space (x),
time (t), and the experiment index (e): U (e,x, t) for x ∈ Ω
and t ∈ [0, T ], where T is the maximum acquisition time.
The experiment index (e) usually represents a shot record, but
could also represent a plane wave or other type of shot en-
coding (Godwin and Sava, 2013). The superscript dot indi-
cates time differentiation. The density is a function of space
ρ(x). The underlying bar indicates that the stress is a second-
order tensor as a function of space, time and experiment index
t
¯
(e,x, t). One needs to use certain relations involving mate-

rial properties to turn equation 1 into a wave equation. Using
a general form of linear Hooke’s law

t
¯

= c
¯̄
e
¯
, (2)

where e
¯
(e,x, t) is the strain tensor, c

¯̄
(x) is the stiffness ten-

sor, and the underlying double bar indicates that the stiffness
is a 4th-order tensor. One can rewrite the equation of motion
in (1) as a function of the strain tensor

ρÜ = ∇ ·
(

c
¯̄
e
¯

)
. (3)

The strain tensor is a function of the displacement:

e
¯

=
1

2

(
∇U +∇UT

)
. (4)

Therefore, using the symmetry of the stiffness tensor, we can
rewrite equation 3 as a wave equation:

ρÜ = ∇ ·
[
c
¯̄
∇U

]
. (5)

Equation 5 can be used to extrapolate elastic wavefield for ar-
bitrary sources, assuming that we know the spatial distribution
of the stiffness tensor for a specific type of symmetry.

2.2 Elastic wavefield energy

Analogous to the acoustic and isotropic elastic cases diss-
cussed in Rocha et al. (2016a,b), we develop the energy con-
servation expression for elastic wavefields in anisotropic me-
dia by taking a dot product of the time derivative of the dis-
placement wavefield (i.e., particle velocity) with the corre-
sponding wave equation, followed by integration over the en-
tire physical domain Ω:∫

Ω

ρU̇ · Üdx =

∫
Ω

U̇ ·
[
∇ ·
(

c
¯̄
∇U

)]
dx . (6)

Rearranging the term on the left-hand side by the chain rule
leads to

1

2

∂

∂t

∫
Ω

ρ‖U̇‖2dx =

∫
Ω

U̇ ·
[
∇ ·
(

c
¯̄
∇U

)]
dx . (7)

Using the chain rule again on the right-hand side leads to

1

2

∂

∂t

∫
Ω

ρ|U̇|2dx =

∫
Ω

∇ ·
[(

c
¯̄
∇U

)
U̇
]
dx

−
∫
Ω

∇U̇ :
(

c
¯̄
∇U

)
dx . (8)
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The first term on the right-hand side turns into a surface inte-
gral over the boundary using the Divergence Theorem (Boas,
2006). Because we assume homogeneous boundary conditions
for the wavefield and its derivatives, this surface integral goes
to zero:

1

2

∂

∂t

∫
Ω

ρ‖U̇‖2dx = −
∫
Ω

∇U̇ :
(

c
¯̄
∇U

)
dx . (9)

Developing the remaining term on the right-hand side by us-
ing the properties of the Frobenius product (Appendix A), we
obtain∫
Ω

∇U̇ :
(

c
¯̄
∇U

)
dx =

∫
Ω

Tr
[
∇U̇T

(
c
¯̄
∇U

)]
dx , (10)

=
1

2

∂

∂t

∫
Ω

Tr
[
∇UT

(
c
¯̄
∇U

)]
dx , (11)

=
1

2

∂

∂t

∫
Ω

(
c
¯̄
∇U

)
: ∇U dx , (12)

where Tr(·) evaluates the trace of a matrix. Substituting equa-
tion 12 in equation 9, we have

1

2

∂

∂t

∫
Ω

ρ‖U̇‖2 +
(

c
¯̄
∇U

)
: ∇U dx = 0 . (13)

Therefore, the function

E(t) =
1

2

∫
Ω

ρ‖U̇‖2 +
(

c
¯̄
∇U

)
: ∇U dx (14)

is conserved in time.

2.3 Physical Interpretation

The first term in the integrand of equation 14 represents the
kinetic energy of the wavefield, and the second term is the
strain energy (Slawinski, 2003), which represents the poten-
tial energy of the wavefield. Therefore, equation 13 states the
familiar fact that the total energy E(t) is conserved in time.
Substituting the stiffness coefficients for the isotropic case in
equation 14, we obtain the energy function for the isotropic
case shown in Rocha et al. (2016b) (Appendix B):

E(t) =
1

2

∫
Ω

[
ρ‖U̇‖2 + λ‖∇ ·U‖2

+ µ
(
∇U : ∇U +∇U : ∇UT

) ]
dx . (15)

The individual terms in equations 14 and 15 are also related to
nonlinear inversion theory as shown by other authors (Hokstad
et al., 1998; Zhu et al., 2009).

2.4 Imaging condition

Considering two wavefields U and V, and the elastic energy
norm in equation 14, we can define the following inner prod-

uct:

< U,V >E=

T∫
0

∫
Ω

ρU̇ · V̇ +
(

c
¯̄
∇U

)
: ∇V dx . (16)

We propose a new elastic imaging condition based on
the inner product in equation 16 between source and receiver
wavefields, followed by summation over time and experi-
ments:

IE =
∑
e,t

[
ρU̇ · V̇ +

(
c
¯̄
∇U

)
: ∇V

]
. (17)

Here, U (e,x, t) and V (e,x, t) are the source and receiver
vector wavefields, respectively, and IE (x) is a scalar image
obtained from the elastic wavefields. We can describe this
imaging condition as a dot product between the following vec-
tors:

�U =
{
ρ
1/2U̇, c

¯̄
1/2(∇U)

}
, (18)

�V =
{
ρ
1/2V̇, c

¯̄
1/2(∇V)

}
. (19)

The tensor c
¯̄
1/2 is the square root of c

¯̄
, which exists and is

unique because c
¯̄

is positive definite (Shao and Lu, 2009).
Equations 18 and 19 define multidimensional vectors with
twelve components (in contrast with three-component vectors
in 3-D space). The first three components of the vectors in
equations 18 and 19 are proportional to the wavefield time
derivatives, U̇ and V̇, and the other nine components are de-
rived from the displacement gradients ∇U and ∇V. We can
call �U and �V “energy” vectors since their norms is equal
to the energy norm in equation 14 for a fixed point in space.

Therefore, we can rewrite equation 17 as

IE =
∑
e,t

�U ·�V . (20)

This expression is analogous to the similar imaging condition
developed for acoustic and isotropic elastic wavefields (Rocha
et al., 2016a,b), and has similar physical interpretation and ap-
plication, as discussed in the next section.

2.5 Backscattering attenuation

Vectors �U and �V are related to the polarization and prop-
agation direction of the elastic wavefields U and V. Consider
a plane wavefield U given by

U = u0 cos [ω (p · x− t)] , (21)

where u0 is the polarization vector, p is the slowness vector,
and ω is the frequency. We assume that ω is large compared
to the size of the medium and that the vectors u0 and p are
slowly varying in space and time, which makes the spatial and
temporal derivatives of u0 and p small compared to ω. We can
rewrite equation 21 in index form as

Ui = ui cos [ω (pmxm − t)] , (22)
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where indices i,m = {1, 2, 3} represent the Cartesian compo-
nents of wavefield U. We follow the Einstein convention and
all repeated indices are summed over. Substituting the plane
wave definition in equation 22 as a trial solution of the elastic
equation in 5, and collecting the highest order term in ω, we
have

ω2 sin [ω (pmxm − t)] [ρui − ukcijklpjpl] = 0 , (23)

where j, k, l = {1, 2, 3}. Since equation 23 must hold for any
ω, we obtain the Christoffel equation:

ρui = ukcijklpjpl . (24)

The dot product between equation 24 and the polarization vec-
tor u0 yields

ρuiui − uiukcijklpjpl = 0 . (25)

Using equation 22, the term U̇ in index form is

U̇i = ωui sin [ω (pmxm − t)] , (26)

and∇U in index form is

Ui,j = −ωuipj sin [ω (pmxm − t)] , (27)

where subscript indices after the comma symbol indicate
spatial derivation with respect to one Cartesian component.
Therefore, we can rewrite the norm of �U, defined in equa-
tion 18, in index form as

‖�U‖2 = ρU̇iU̇i + cijklUi,jUk,l . (28)

Using equations 26 and 27, the individual terms in equation 28
are

ρU̇iU̇i = ρω2uiui sin2 [ω (pmxm − t)] , (29)

cijklUi,jUk,l = ω2uiukcijklpjpl sin2 [ω (pmxm − t)] . (30)

Hence, the norm of �U is

‖�U‖2 =ω2
[
ρuiui+uiukcijklpjpl

]
sin2 [ω (pmxm − t)] .

(31)
We seek to define an imaging condition that attenuates the cor-
relation between waves from the source and receiver wave-
fields propagating along the same path and with the same
polarization, i.e., elastic backscattering. Therefore, elastic
backscattering events are characterized by the same plane
waves: Vi = Ui = ui cos [ω (pmxm − t)]. Defining (�V)†

as

(�V)† =
{
−ρ1/2Vt, c

¯̄
1/2(∇V)

}
, (32)

we compute the dot product between �U and (�V)† for
backscattering events as

�U ·(�V)†=ω2[ρuiui−uiukcijklpjpl]sin
2[ω(pmxm−t)].

(33)
Using the relation in equation 25, we obtain

�U · (�V)† = 0 , (34)

i.e., the dot product is equal to zero everywhere except at the
locations where reflectors exist or different wave modes inter-

act, since the vectors p and u0 are different for U and V at
these locations. Therefore, the dot product in equation 34 nulli-
fies the events that propagate along the same path and have the
same polarization. Such events include reflection backscatter-
ing, diving, direct, and head waves from the same wave modes.
Therefore, the imaging condition

I†E =
∑
e,t

�U · (�V)† (35)

attenuates backscattering artifacts in elastic RTM images.

3 EXAMPLES

Using a simple model with a horizontal reflector at z = 1.5
km and a vertical displacement source function (Figure 1), we
test the proposed imaging condition and compare it with the
conventional imaging conditions (Figure 2). We refer to the
zero-lag correlation between displacement field components
as conventional imaging conditions (Yan and Sava, 2007). Fig-
ure 1 also shows the model parameters that we use in this
experiment following the convention from Thomsen (1986).
The presence of the reflector in the migration velocity leads
to a velocity contrast, causing backscattering artifacts in the
conventional images (Figures 2(a)-2(c)). In addition, the po-
larity reversal at normal incidence occurs when different com-
ponents of the displacement field are correlated (Figure 2(b)).
In contrast, the energy imaging condition from equation 35
effectively attenuates the backscattering artifacts and shows
no polarity reversal at the imaged reflector (Figure 2(d)). Fig-
ure 2(d) only contains artifacts that are caused by the non-
physical (“fake”) modes generated during the wavefield ex-
trapolation. These artifacts are characterized by the correla-
tion of events with different polarization and/or propagation
direction. Based on equation 33, the energy image outputs
a non-zero dot product between the energy vectors �U and
(�V)† for these artifacts. For a multiple-shot experiment, the
“fake” modes artifacts are attenuated after stacking over shots,
whereas backscattering artifacts and polarity reversal effects
are not.

Figures 3-6 show the Marmousi II (Martin et al., 2002)
acquisition geometry, model parameters used to simulate syn-
thetic data, the migration model parameters, and the resulted
images. As seen in Figure 3, the synthetic data are obtained
from a horizontal line of receivers that record the displacement
field at every grid point of the water bottom (z = 0.5 km), and
from 76 pressure sources located near the surface of the wa-
ter layer (z = 0.05 km) with a horizontal spacing of 150 m.
This acquisition geometry resembles a multicomponent ocean
bottom seismic survey (OBS). The migration model parame-
ters are smoothed versions of the true model parameters (Fig-
ures 4 and 5) and contain sufficient sharp interfaces that cre-
ate backscattering reflections during the wavefield extrapola-
tion. Such interfaces generate artifacts when using conven-
tional imaging conditions. As expected, all conventional im-
ages in Figures 6(a)-6(c) contain backscattering artifacts, and
Figure 6(b) also shows the effects of a non-constructive stack
due to polarity reversal artifacts. In contrast, we attenuate all of
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these artifacts in Figure 6(d) using the imaging condition from
equation 35. Similar to the simple experiment in Figure 2(d),
using our new imaging condition, the individual elastic images
for shots have only “fake” mode artifacts, which are attenuated
after stacking over shots, thus leading to a good quality image,
as seen in Figure 6(d).

Figures 7 and 8 show a 3D elastic experiment with con-
stant model parameters above a horizontal reflector at z =
0.21 km. The model consists of a 3D TTI anisotropy sym-
metry system, and the tilt is determined by a 30◦ angle with
the vertical axis, and an azimuth of 45◦ with respect to the
x−axis. We use a vertical dislocation source at the center of
the surface (x = y = 0.45 km and z = 0 km) to gen-
erate the source wavefield. The receiver wavefield is extrap-
olated from receivers at every grid point from the surface
(z = 0 km). The correlation between displacement compo-
nents from the source and receiver wavefields generate images
with strong backscattering artifacts and polarity reversal ef-
fects (Figures 8(a)-Figures 8(c)). Using the energy imaging in
equation 35, we form an image with attenuated artifacts and
no polarity reversal (Figure 8(d)).

4 CONCLUSIONS

The anisotropic energy imaging condition is applicable for ar-
bitrary anisotropy, produces a scalar image without the need
for wave-mode decomposition, and does not suffer from polar-
ity reversal, as is the case for displacement images using dif-
ferent components of the source and receiver wavefields. We
describe this imaging condition as the scalar product between
the energy vectors �U and �V, which are built using the ex-
trapolated wavefields U and V. As inferred from the definition
of these vectors, the proposed imaging condition accounts for
wavefield directionality, incorporating the wavefield propaga-
tion and polarization directions. By exploiting this direction-
ality, we are able to attenuate the backscattering artifacts in
the imaging process, and obtain robust, inexpensive and high-
quality elastic images.
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(a)

(b)

(c)

(d)

Figure 2. Imaging conditions using displacement components for a horizontal reflector with a vertical displacement source at x = 5 km: (a) UxVx,
(b) UzVx, and (c) UzVz image, where {Ux, Uz} and {Vx, Vz} are the horizontal and vertical components of the source and receiver wavefields,
respectively. Artifacts present in all images occur due to the “fake” modes (caused by injection of vector fields). Polarity reversal at normal incidence
occurs for the image in (b), and backscattering artifacts occur for images in (a)-(c). Comparing to the other images, the energy image in (d) is the
only one with attenuated backscattering artifacts and without polarity reversal at normal incidence.
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Figure 3. Acquisition geometry used in the Marmousi II experiment. The white dots indicate the positions of the seventy-six pressure sources
(z = 0.05 km), and the line at the water bottom indicates multicomponent receivers that record the displacement field (z = 0.5 km).
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Appendix A

Frobenius product and norm

The Frobenius norm in linear algebra generalizes the more
conventional vector norm concept. Consider an arbitrary ma-
trix AM×N , this norm is defined as (Golub and Loan, 1996)

||A||F =

√√√√ M∑
i=1

N∑
j=1

|aij |2 . (A.1)

One can also define a norm of a tensor field using the inner
product of associate matrices. Given tensor fields A and B, the
Frobenius product is defined as

< A,B >F = A : B =

M∑
i=1

N∑
j=1

aijbij , (A.2)

where M and N are the dimensions of the tensors A and B.
This product can also be written in matrix form as

< A,B >F = A : B = Tr(ATB) = Tr(ABT) . (A.3)

Then, the Frobenius norm of a tensor A is written as

||A||F =
√

Tr(AAT) . (A.4)

Appendix B

Strain-energy function in isotropic media

In a general elastic medium subject to infinitesimal strains, the
strain-energy function is (Slawinski, 2003)

E(ε) =
1

2
cijlkεklεij , (B.1)

where cijlk is an element of the stiffness tensor c
¯̄
, and εij is

an element of the strain tensor e
¯
. The repeated indices i, j, k, l

imply summation, following the Einstein convention (Robert,
2005). For an isotropic medium, the stiffness coefficients are

(Aki and Richards, 2002)

cijlk = λδijδkl + µδikδjl + µδilδjk , (B.2)

where δij is the Kronecker delta function, and λ and µ are the
Lamé parameters. Substituting equation B.2 in equation B.1,
we obtain

E(ε) =
1

2
[λδijδkl + µδikδjl + µδilδjk] εklεij . (B.3)

Considering the Kronecker delta function is equal to unity for
equal indices and zero otherwise, we develop each term and
obtain

E(ε) =
1

2
[λεiiεkk + µεijεij + µεjiεij ] . (B.4)

These implicit summations can be written in matrix form as

E(e) =
1

2

[
λTr[e]Tr[e] + µ (e : e) + µ

(
e : eT

)]
. (B.5)

As the strain tensor is symmetric, we obtain

E(e) =
1

2

[
λ (Tr[e])2 + 2µ (e : e)

]
. (B.6)

The strain tensor e is a function of the wavefield derivatives:

e =
1

2

[
∇U +∇UT

]
(B.7)

Substituting equation B.7 in B.6, we obtain

E(e)=
1

2

[
λ‖∇·U‖2+2µ

(
1

2

(
∇U+∇UT

)
:
1

2

(
∇U+∇UT

))]
=

1

2

[
λ‖∇·U‖2+

µ

2

(
∇U :∇U+2∇U :∇UT+∇UT :∇UT

)]
=

1

2

[
λ‖∇·U‖2+µ

(
∇U :∇U+∇U :∇UT

)]
, (B.8)

which corresponds to the potential energy terms of equa-
tion 15.
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(a)

(b)

(c)

Figure 4. Migration model parameters used for the Marmousi II experiment. (a) P- and (b) S-wave velocity along the local symmetry axis (VP0

and VS0, in km/s). (c) Stratigraphic density model used to generate synthetic data (in g/cm3).
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(a)

(b)

(c)

Figure 5. Migration anisotropy parameters used for the Marmousi II experiment. (a) ε, (b) δ, and (c) local tilt angle ν (in degrees).
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(a)

(b)

(c)

(d)

Figure 6. Images obtained from the Marmousi II experiment: conventional images using the correlation between displacement components (a)
UxVx, (b) UxVz , and (c) UzVz ; (d) energy image using the imaging condition in equation 35. Polarity reversal effects are visible in (b) by the
change in polarity from the low-wavenumber artifacts. The energy image in (d) is the only one without low-wavenumber backscattering artifacts.
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Figure 7. Schematic representation of the 3D TTI model used in the experiment of Figure 8. The black arrow indicates the tilted symmetry axis.
The gray arrows indicate the projections of this vector onto the vertical axis and onto the reflection plane. Model parameters in the original system
are VP0 = 2.3 km/s,VS0 = 1.3 km/s, ρ = 2.0 g/cm3, ε = 0.4, δ = 0.1, and γ = 0.0.
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(a) (b)

(c) (d)

Figure 8. Images using the correlation between displacement components: (a) UxVy , (b) UxVz , and (c) UzVz ; and an image using the energy
imaging condition in (d). Artifacts due to the “fake” modes are present in all images. Backscattering artifacts and polarity reversal occur in the
conventional images in (a)-(c) but not in the energy image in (d).
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