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ABSTRACT

Based on the energy conservation principle, we derive a
scalar imaging condition for anisotropic elastic wavefield
migration. Compared with conventional imaging conditions
that correlate displacement components or potentials from
source and receiver wavefields, the proposed imaging
condition does not suffer from polarity reversal, which de-
grades the image quality after stacking over shots. Our im-
aging condition also accounts for the directionality of the
wavefields in space and time, leading to the attenuation
of backscattering artifacts, which commonly appear in elas-
tic reverse time migration images in the presence of strong
model contrasts. In addition, our new imaging condition
does not require wave-mode decomposition, which demands
significant additional cost for elastic wavefields in aniso-
tropic media. To properly image structures, we rely on the
anisotropy parameters used in migration, as one would do
for any other imaging condition. Our imaging condition
is suitable for arbitrary anisotropy. We show the successful
application of the anisotropic energy imaging condition by
performing numerical experiments on simple and complex
geologic models. We compare its quality with conventional
counterparts by simulating complex geologic settings with
vertical or tilted transverse isotropy.

INTRODUCTION

We frame our paper in the context of (1) an elastic earth, support-
ing the propagation of P- and S-waves, and (2) an anisotropic earth,
causing wave phenomena such as phase-velocity variation with the
propagation direction. Although the seismic exploration industry
has used acoustic and isotropic assumptions for a long time, the
search for more authentic images and subsurface information, such
as fracture distribution, encourages multicomponent elastic-wave-

field imaging (Chang and McMechan, 1987; Balch and Erdemir,
1994; Denli and Huang, 2008; Yan and Sava, 2011b; Yan and
Xie, 2012; Du et al., 2014; Gong et al., 2016). At the same time,
data acquired with larger offsets and the increasing number of ac-
quired azimuths enable one to properly account for the influence of
anisotropy to image complex geologic structures (Mikhailov et al.,
2001; Jing et al., 2006; Lu et al., 2010; Zhang and McMechan,
2011; Li et al., 2012; McGarry and Qin, 2013; Hu et al., 2014;
Wang et al., 2014).
Wavefield imaging, using either the acoustic or the elastic wave

equation, is implemented in two steps: (1) wavefield extrapolation
in the subsurface, using recorded data and an earth model, and
(2) the application of an imaging condition to extract the earth’s
reflectivity from the extrapolated wavefields (Claerbout, 1971; Et-
gen, 1988; Yan and Sava, 2009). If a two-way elastic wave equation
is used in the wavefield-extrapolation step, followed by the zero-lag
crosscorrelation of the wavefields as the imaging condition, the
procedure is called elastic reverse time migration (Chang and
McMechan, 1987; Hokstad et al., 1998). In recent years, many
elastic-imaging conditions have been proposed by exploiting the
multicomponent aspect of the elastic wavefield and, for the iso-
tropic case, by possibly decomposing the displacement fields into
P- and S-wave potentials (Dellinger and Etgen, 1990; Zhe and
Greenhalg, 1997; Yan and Sava, 2007; Yan and Xie, 2010; Duan
and Sava, 2014a). For anisotropic media, wave-mode decomposi-
tion during wavefield extrapolation is feasible but requires addi-
tional computational cost and robust techniques (Yan and Sava,
2009; Zhang and McMechan, 2010; Yan and Sava, 2011a; Cheng
and Fomel, 2014). Considering the high cost of wave-mode decom-
position, the straight correlation of the source and receiver displace-
ment fields for each component is a convenient imaging condition
for elastic wavefields in anisotropic media (Jiang, 2016; Kim et al.,
2016). However, for 3D imaging, this imaging condition generates
nine images (considering all possible correlations among source
and receive wavefield components) with a mixture of wave modes,
and this large set of images poses serious difficulties for interpre-
tation.
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Another problem exhibited by displacement imaging conditions
is polarity reversal, which occurs if one correlates displacement
components from opposite directions. The main disadvantage of po-
larity reversal is the degradation of image quality after stacking over
experiments. Polarity reversal can be corrected by different tech-
niques (Balch and Erdemir, 1994; Yan and Sava, 2008; Du et al.,
2014; Duan and Sava, 2014a), but all such approaches are either
approximate (e.g., reversal at zero offset) or costly.
Compared with the acoustic case, elastic imaging involves an-

other issue in addition to polarity reversal. Injection of elastic data
into a model (implementing wavefield backpropagation) creates
nonphysical (or “fake”) wave modes during the wavefield extrapo-
lation step, leading to artifacts after the application of an imaging
condition (Yan and Sava, 2007; Ravasi and Curtis, 2013; Duan and
Sava, 2014a). These artifacts degrade image quality, and might be
present even after stacking, masking weak reflections in the final
image (Duan and Sava, 2014b). This type of artifact is caused by
displacement injection into the model and is beyond the scope of
this paper.
Analogous to the acoustic case, a second type of artifact appears

if the elastic model contains sharp interfaces. These interfaces create
backscattered reflections at the wavefield extrapolation step, and
conventional correlation of the multicomponent wavefields creates
low-wavenumber artifacts in the image at the imaging condition
step (Youn and Zhou, 2001; Yoon and Marfurt, 2006; Guitton et al.,
2007; Denli and Huang, 2008; Chen and Huang, 2014; Diaz and
Sava, 2015; Rocha et al., 2016b). Ideally, the backscattering arti-
facts should be attenuated during imaging, without the use of post-
imaging artificial filters, such as the Laplacian operator (Zhang and
Sun, 2009).
Considering these issues, we seek to facilitate interpretation and

provide a concise description of the subsurface structures by defin-
ing an imaging condition that yields an attribute of the earth’s re-
flectivity into a single image without wave-mode decomposition,
without polarity reversal, and without backscattering artifacts. Our
proposed imaging condition is formulated using the energy conser-
vation principle (Yu, 1964; Ben-Menahem and Singh, 1981; Web-
ster, 2000; Rocha et al., 2016a), and it extends the previous work on
isotropic elastic wavefield imaging (Rocha et al., 2016b).

THEORY

We use energy conservation laws analogous to the acoustic and
isotropic elastic cases (Rocha et al., 2016a, 2016b) to derive a func-
tion that measures the energy of a wavefield in anisotropic media.
This energy function also allows us to form an imaging condition
for extrapolated elastic wavefields from sources and receivers.

Elastic wave equation

For an anisotropic medium enclosed by a physical domain
Ω ⊂ R3, we can write the equation of motion with no external
sources (Aki and Richards, 2002):

ρÜ ¼ ∇ · t: (1)

In equation 1, the displacement field is a function of space (x), time
(t), and the experiment index (e):Uðe; x; tÞ for x ∈ Ω and t ∈ ½0; T�,
where T is the maximum acquisition time. The experiment index (e)
usually represents a shot record, but it could also represent a plane

wave or other type of shot encoding (Romero et al., 2000; Liu et al.,
2006; Godwin and Sava, 2013). The superscript dot indicates time
differentiation. The density is a function of space ρðxÞ. The under-
lying bar indicates that the stress is a second-order tensor as a func-
tion of space, time, and experiment index tðe; x; tÞ. One needs to use
certain relations involving material properties to turn equation 1 into
a wave equation. Using a general form of linear Hooke’s law

t ¼ c e; (2)

where eðe; x; tÞ is the strain tensor, cðxÞ is the stiffness tensor, and
the underlying double bar indicates that the stiffness is a fourth-or-
der tensor. One can rewrite the equation of motion in equation 1 as a
function of the strain tensor

ρÜ ¼ ∇ · ðc eÞ: (3)

The strain tensor is a function of the displacement:

e ¼ 1

2
ð∇Uþ ∇UTÞ: (4)

Therefore, using the symmetry of the stiffness tensor, we can re-
write equation 3 as a wave equation:

ρÜ ¼ ∇ · ½c∇U�: (5)

Equation 5 can be used to extrapolate an elastic wavefield for ar-
bitrary sources, assuming that we know the spatial distribution of
the stiffness tensor cðxÞ.

Elastic wavefield energy

Analogous to the acoustic and isotropic elastic cases disscussed
in Rocha et al. (2016a, 2016b), we develop the energy conservation
expression for elastic wavefields in anisotropic media by taking
a dot product of the time derivative of the displacement wavefield
(i.e., particle velocity) with the corresponding wave equation, fol-
lowed by integration over the entire physical domain Ω:

Z
Ω

ρ _U · Üdx ¼
Z
Ω

_U · ½∇ · ðc∇UÞ�dx: (6)

Rearranging the term on the left side by the chain rule leads to

1

2

∂
∂t

Z
Ω

ρk _Uk2dx ¼
Z
Ω

_U · ½∇ · ðc∇UÞ�dx: (7)

Using the chain rule again on the right side leads to

1

2

∂
∂t

Z
Ω

ρk _Uk2dx ¼
Z
Ω

∇ · ½ðc∇UÞ _U�dx −
Z
Ω

∇ _U∶ðc∇UÞdx:

(8)

The first term on the right side turns into a surface integral over the
boundary using the divergence theorem (Boas, 2006). Because we
assume homogeneous boundary conditions for the wavefield and its
derivatives, this surface integral goes to zero:
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1

2

∂
∂t

Z
Ω

ρk _Uk2dx ¼ −
Z
Ω

∇ _U∶ðc∇UÞdx: (9)

Developing the remaining term on the right side by using the prop-
erties of the Frobenius product (Appendix A), we obtain

Z
Ω

∇ _U∶ðc∇UÞdx ¼
Z
Ω

Tr½∇ _UTðc∇UÞ�dx; (10)

¼ 1

2

∂
∂t

Z
Ω

Tr½∇UTðc∇UÞ�dx; (11)

¼ 1

2

∂
∂t

Z
Ω

ðc∇UÞ∶∇Udx; (12)

where Trð·Þ evaluates the trace of a matrix. Substituting equation 12
in equation 9, we have

1

2

∂
∂t

Z
Ω

ρk _Uk2 þ ðc∇UÞ∶∇Udx ¼ 0: (13)

Therefore, the function

EðtÞ ¼ 1

2

Z
Ω

ρk _Uk2 þ ðc∇UÞ∶∇Udx (14)

is conserved in time.

Physical interpretation

The first term in the integrand of equation 14 represents the ki-
netic energy of the wavefield, and the second term is the strain
energy (Slawinski, 2003), which represents the potential energy
of the wavefield. Therefore, equation 13 states the familiar fact that
the total energy EðtÞ is conserved in time. Substituting the stiffness
coefficients for the isotropic case in equation 14, we obtain the en-
ergy function for the isotropic case shown in Rocha et al. (2016b)
(Appendix B):

EðtÞ ¼ 1

2

Z
Ω

ρk _Uk2 þ λk∇ · Uk2

þ μ½∇U∶∇Uþ ∇U∶∇UT�dx: (15)

The individual terms in equations 14 and 15 are also related to non-
linear inversion theory as shown by Hokstad et al. (1998) and Zhu
et al. (2009).

Imaging condition

Considering twowavefieldsU andV, and the elastic energy norm
in equation 14, we can define the following inner product:

hU;ViE ¼
Z

T

0

Z
Ω

ρ _U · _Vþ ðc∇UÞ∶∇Vdx: (16)

We propose a new elastic imaging condition based on the inner
product in equation 16 between source and receiver wavefields, fol-
lowed by summation over time and experiments:

IE ¼
X
e;t

½ρ _U · _Vþ ðc∇UÞ∶∇V�: (17)

Here, Uðe; x; tÞ and Vðe; x; tÞ are the source and receiver vector
wavefields, respectively, and IEðxÞ is a scalar image obtained from
the elastic wavefields. The imaging condition in equation 17 can
conveniently be formulated for orthorhombic and vertical transverse
isotropic media (Appendix C). We can describe this imaging con-
dition as a dot product between the following vectors:

□U ¼ fρ1∕2 _U; c1∕2ð∇UÞg; (18)

□V ¼ fρ1∕2 _V; c1∕2ð∇VÞg: (19)

The tensor c1∕2 is the square root of c, which exists and is unique
because c is positive definite (Shao and Lu, 2009). Equations 18 and
19 define multidimensional vectors with 12 components (in contrast
with the 3C vectors in 3D space). The first three components of the
vectors in equations 18 and 19 are proportional to the wavefield
time derivatives, _U and _V, and the other nine components are de-
rived from the displacement gradients ∇U and ∇V. We can call□U
and□V “energy” vectors because their magnitudes are equal to the
energy norm in equation 14 for a fixed point in space.
Therefore, we can rewrite equation 17 as

IE ¼
X
e;t

□U · □V: (20)

This expression is analogous to the similar imaging condition de-
veloped for acoustic and isotropic elastic wavefields (Rocha et al.,
2016a, 2016b), and it has similar physical interpretation and appli-
cation, as discussed in the next section.

Backscattering attenuation

Vectors □U and □V are related to the polarization and propaga-
tion direction of the elastic wavefields U and V. Consider a plane
wavefield U given by

U ¼ u0 cos½ωðp · x − tÞ�; (21)

where u0 is the polarization vector, p is the slowness vector, andω is
the frequency. We assume that ω is large compared with the size of
the medium, and that the vectors u0 and p are slowly varying in
space and time, which makes the spatial and temporal derivatives
of u0 and p small compared with ω. We can rewrite equation 21 in
index form as

Ui ¼ ui cos½ωðpmxm − tÞ�; (22)

where indices i; m ¼ f1; 2; 3g represent the Cartesian components
of wavefield U. We follow the Einstein convention and all repeated

Anisotropic imaging by the energy norm S227
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indices are summed over. Substituting the plane-wave definition in
equation 22 as a trial solution of the elastic equation in 5, and col-
lecting the highest order term in ω, we have

ω2 sin½ωðpmxm − tÞ�½ρui − ukcijklpjpl� ¼ 0; (23)

where j; k; l ¼ f1; 2; 3g. Because equation 23 must hold for any ω,
we obtain the Christoffel equation

ρui ¼ ukcijklpjpl: (24)

The dot product between equation 24 and the polarization vector u0
yields

ρuiui − uiukcijklpjpl ¼ 0: (25)

Using equation 22, the term _U in index form is

_Ui ¼ ωui sin½ωðpmxm − tÞ�; (26)

and ∇U in index form is

Ui;j ¼ −ωuipj sin½ωðpmxm − tÞ�; (27)

where the subscript indices after the comma symbol indicate the
spatial derivation with respect to one Cartesian component. There-
fore, we can rewrite the norm of □U, defined in equation 18, in
index form as

k□Uk2 ¼ ρ _Ui
_Ui þ cijklUi;jUk;l: (28)

Using equations 26 and 27, the individual terms in equation 28 are

ρ _Ui
_Ui ¼ ρω2uiui sin2½ωðpmxm − tÞ�; (29)

cijklUi;jUk;l ¼ ω2uiukcijklpjpl sin
2½ωðpmxm − tÞ�: (30)

Hence, the norm of □U is

k□Uk2 ¼ ω2½ρuiui þ uiukcijklpjpl�sin2½ωðpmxm − tÞ�:
(31)

We seek to define an imaging condition that attenuates the correlation
between waves from the source and receiver wavefields propagating
along the same path and with the same polarization, i.e., elastic back-
scattering. Therefore, elastic backscattering events are characterized
by the same plane waves: Vi ¼ Ui ¼ ui cos½ωðpmxm − tÞ�. Defining
ð□VÞ† as

ð□VÞ† ¼ f−ρ1∕2 _V; c1∕2ð∇VÞg; (32)

we compute the dot product between □U and ð□VÞ† for backscat-
tering events as

□U · ð□VÞ†
¼ ω2½ρuiui − uiukcijklpjpl� sin2½ωðpmxm − tÞ�: (33)

Using the relation in equation 25, we obtain

□U · ð□VÞ† ¼ 0; (34)

i.e., the dot product is equal to zero everywhere except at the loca-
tions where reflectors exist or different wave modes interact because
the vectors p and u0 are different for U and V at these locations.
Therefore, the dot product in equation 34 nullifies the events that
propagate along the same path and have the same polarization. Such
events include reflection backscattering, diving, direct, and head
waves from the same wave modes. Therefore, the imaging condition

I†E ¼
X
e;t

□U · ð□VÞ† (35)

attenuates backscattering artifacts in elastic RTM images.

EXAMPLES

Using a simple model with a horizontal reflector at z ¼ 1.5 km

and a vertical displacement source function (Figure 1), we test the
proposed imaging condition and compare it with conventional im-
aging conditions (Figure 2). We refer to the zero-lag correlation
between displacement field components as conventional imaging
conditions (Yan and Sava, 2007). Figure 1 also shows the model
parameters that we use in this experiment following the convention
from Thomsen (1986). The presence of the reflector in the migra-
tion velocity leads to a velocity contrast, causing backscattering
artifacts in the conventional images (Figure 2a–2c). In addition,
the polarity reversal at normal incidence occurs when different com-
ponents of the displacement field are correlated (Figure 2b). In con-
trast, the energy imaging condition from equation 35 effectively
attenuates the backscattering artifacts and shows no polarity rever-
sal at the imaged reflector (Figure 2d). Figure 2d only contains
artifacts that are caused by the nonphysical (fake) modes generated
during the wavefield extrapolation. These artifacts are characterized
by the correlation of events with different polarization and/or propa-
gation direction. Based on equation 33, the energy image outputs
a nonzero dot product between the energy vectors □U and ð□VÞ†
for these artifacts. For a multiple-shot experiment, the fake mode

a)

b)

Figure 1. Model parameters useds for the experiments in Figure 2:
(a) P and (b) S velocity along the symmetry axis. The anisotropy
parameters ϵ ¼ 0.4, δ ¼ 0.3, and ν ¼ 26° are constant for the entire
model.
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artifacts are attenuated after stacking over shots, whereas backscat-
tering artifacts and polarity reversal effects are not.
Figures 3, 4, 5, and 6 show the Marmousi II (Martin et al., 2002)

acquisition geometry, model parameters used to simulate synthetic
data, the migration model parameters, and the resulted images. As
seen in Figure 3, the synthetic data are obtained from a horizontal line
of receivers that record the displacement field at every grid point of
the water bottom (z ¼ 0.5 km), and from 76 pressure sources located
near the surface of the water layer (z ¼ 0.05 km) with a horizontal
spacing of 150 m. This acquisition geometry resembles a multicom-
ponent ocean bottom seismic survey. The migration model parame-
ters are smoothed versions of the true model parameters (Figures 4
and 5) and contain sharp interfaces to sufficiently create backscatter-
ing reflections during the wavefield extrapolation. Such reflections
generate artifacts when using conventional imaging conditions. As
expected, all conventional images in Figure 6a–6c contain backscat-
tering artifacts, and Figure 6b also shows the effects of a nonconstruc-
tive stack due to polarity reversal artifacts. In contrast, we attenuate
all of these artifacts in Figure 6d using the imaging condition from
equation 35. Similar to the simple experiment in Figure 2d, using our

new imaging condition, the individual elastic images for shots have
only fake mode artifacts, which are attenuated after stacking over
shots, thus leading to a good-quality image, as seen in Figure 6d.
Figures 7 and 8 show a 3D elastic experiment with constant

model parameters above a horizontal reflector at z ¼ 0.21 km. The
model consists of a 3D tilted transverse isotropy (TTI) anisotropy
symmetry system, and the tilt is determined by a 30° angle with the
vertical axis, and an azimuth of 45° with respect to the x-axis. We
use a vertical dislocation source at the surface in the middle of the
model (x ¼ y ¼ 0.45 km and z ¼ 0 km) to generate the source
wavefield. The receiver wavefield is extrapolated from receivers
at every grid point from the surface (z ¼ 0 km). The correlation
between displacement components from the source and receiver
wavefields generate images with strong backscattering artifacts

a)

b)

c)

d)

Figure 2. Imaging conditions using displacement components for a
horizontal reflector with a vertical displacement source at x ¼ 5 km:
(a) UxVx, (b) UzVx, and (c) UzVz image, where fUx; Uzg and
fVx; Vzg are the horizontal and vertical components of the source
and receiver wavefields, respectively. Artifacts present in all images
occur due to the fake modes (caused by injection of vector fields).
Polarity reversal at normal incidence occurs for the image in panel
(b), and backscattering artifacts occur for images in (a-c). Compared
with the other images, the energy image in panel (d) is the only one
with attenuated backscattering artifacts and without polarity reversal
at normal incidence.

Figure 3. Acquisition geometry used in the Marmousi II experi-
ment (Figures 4–6). The white dots indicate the positions of the
76 pressure sources (z ¼ 0.05 km), and the white line at the water
bottom indicates multicomponent receivers that record the displace-
ment field (z ¼ 0.5 km).

a)

b)

c)

Figure 4. Migration model parameters used for the Marmousi II ex-
periment. (a) P- and (b) S-wave velocities along the local symmetry
axis (VP0 and VS0, in km∕s). (c) Stratigraphic density model used to
generate synthetic data (in g∕cm3).
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and polarity-reversal effects (Figure 8a–8c). Using the energy im-
aging in equation 35, we form an image with attenuated artifacts and
no polarity reversal (Figure 8d).

DISCUSSION

The main advantage of our method is that we are able to image
the subsurface using anisotropic and elastic wavefields without
wave-mode decomposition. Substantial improvements have been
achieved in recent years through methods based on wave-mode de-
composition (Zhang and McMechan, 2010; Yan and Sava, 2011a;
Cheng and Fomel, 2014; Sripanich et al., 2015; Wang et al., 2016).
Such methods are still computationally intense, as demonstrated
by the fact that the vast majority of publications on this subject
are limited to decomposing a few wavefield snapshots instead
of running complete shot-record migrations. For instance, Cheng
and Fomel (2014) use low-rank approximation to implement
wave-mode decomposition that has a computational cost of order
OðMNx log NxÞ, where Nx is the spatial dimension of the model
andM is the rank, which can vary from 7 to 17 for complex models
(depending on the desired accuracy). Alternatively, our energy im-
aging condition requires the same spatial derivatives as those in
Helmholtz decomposition, which has a computational cost of order
OðNxÞ.

a)

b)

c)

Figure 5. Migration anisotropy parameters used for the Marmousi
II experiment. (a) ϵ, (b) δ, and (c) local tilt angle ν (in degrees).

a)

b)

c)

d)

Figure 6. Images obtained from the Marmousi II experiment: con-
ventional images using the correlation between displacement compo-
nents (a) UxVx, (b) UxVz, and (c) UzVz; (d) energy image using the
imaging condition in equation 35. Polarity reversal effects are visible
in panel (b) by the change in polarity from the low-wavenumber ar-
tifacts. The energy image in panel (d) is the only one without low-
wavenumber backscattering artifacts.

Figure 7. Schematic representation of the 3D TTI model used in the
experiment of Figure 8. The black arrow indicates the tilted sym-
metry axis. The gray arrows indicate the projections of this vector
onto the vertical axis and onto the reflection plane. Model param-
eters in the original system are VP0 ¼ 2.3 km∕s, VS0 ¼ 1.3 km∕s,
ρ ¼ 2.0 g∕cm3, ϵ ¼ 0.4, δ ¼ 0.1, and γ ¼ 0.0.
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However, the absence of wave-mode decomposition in our method
limits interpretation by not providing a suitable relationship between
P- and S-wave impedance contrasts, which is systematically studied
in reservoir characterization. Our energy imaging condition reflects
the balance of energy between the incoming source wavefield and the
reflected receiver wavefield. The amplitude information from the en-
ergy image and its possible contribution to reservoir characterization
are not clear and are subjects for future research.

CONCLUSION

The anisotropic energy imaging condition is applicable for arbi-
trary anisotropy, produces a scalar image without the need for wave-
mode decomposition, and does not suffer from polarity reversal, as
is the case for displacement images using different components of
the source and receiver wavefields. We describe this imaging con-
dition as the scalar product between the energy vectors □U and
□V, which are built using conventionally extrapolated wavefields
U and V. As inferred from the definition of these vectors, the pro-
posed imaging condition accounts for wavefield directionality,
incorporating the wavefield propagation and polarization directions.
By exploiting this directionality, we are able to attenuate the back-
scattering artifacts in the imaging process, and obtain robust, in-
expensive, and high-quality elastic images.
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APPENDIX A

FROBENIUS PRODUCT AND NORM

The Frobenius norm in linear algebra generalizes the more con-
ventional vector norm concept. Consider an arbitrary matrix AM×N ,
this norm is defined as (Golub and Loan, 1996)

kAkF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXM
i¼1

XN
j¼1

jaijj2
vuut : (A-1)

One can also define a norm of a tensor field using the inner product
of associated matrices. Given tensor fields A and B, the Frobenius
product is defined as

a)

b)

c)

d)

Figure 8. Images using the correlation between displacement components: (a) UxVy, (b) UxVz, and (c) UzVz; and an image using the energy
imaging condition in panel (d). Artifacts due to the fake modes are present in all images. Backscattering artifacts and polarity reversal occur in
the conventional images in panels (a-c) but not in the energy image in panel (d).
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hA;BiF ¼ A∶B ¼
XM
i¼1

XN
j¼1

aijbij; (A-2)

where M and N are the dimensions of the tensors A and B. This
product can also be written in matrix form as

hA; BiF ¼ A∶B ¼ TrðATBÞ ¼ TrðABTÞ: (A-3)

Then, the Frobenius norm of a tensor A is written as

kAkF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TrðAATÞ

q
: (A-4)

APPENDIX B

STRAIN-ENERGY FUNCTION IN
ISOTROPIC MEDIA

In a general elastic medium subject to infinitesimal strains, the
strain-energy function is (Slawinski, 2003)

EðϵÞ ¼ 1

2
cijlkϵklϵij; (B-1)

where cijlk is an element of the stiffness tensor c, and ϵij is an
element of the strain tensor e. The repeated indices i; j; k; and l im-
ply summation, following the Einstein convention (Robert, 2005).
For an isotropic medium, the stiffness coefficients are (Aki and Ri-
chards, 2002)

cijlk ¼ λδijδkl þ μδikδjl þ μδilδjk; (B-2)

where δij is the Kronecker delta function, and λ and μ are the Lamé
parameters. Substituting equation B-2 in equation B-1, we obtain

EðϵÞ ¼ 1

2
½λδijδkl þ μδikδjl þ μδilδjk�ϵklϵij: (B-3)

Considering the Kronecker delta function is equal to unity for equal
indices and zero otherwise, we develop each term and obtain

EðϵÞ ¼ 1

2
½λϵiiϵkk þ μϵijϵij þ μϵjiϵij�: (B-4)

These implicit summations can be written in matrix form as

EðeÞ ¼ 1

2
½λTr½e�Tr½e� þ μðe∶eÞ þ μðe∶eTÞ�: (B-5)

As the strain tensor is symmetric, we obtain

EðeÞ ¼ 1

2
½λðTr½e�Þ2 þ 2μðe∶eÞ�: (B-6)

The strain tensor e is a function of the wavefield derivatives:

e ¼ 1

2
½∇Uþ ∇UT�: (B-7)

Substituting equation B-7 in equation B-6, we obtain

EðeÞ¼1

2

�
λk∇ ·Uk2þ2μ

�
1

2
ð∇Uþ∇UTÞ∶1

2
ð∇Uþ∇UTÞ

��
;

¼1

2

�
λk∇ ·Uk2þ1

2
μð∇U∶∇Uþ2∇U∶∇UTþ∇UT∶∇UTÞ

�
;

¼1

2
½λk∇ ·Uk2þμð∇U∶∇Uþ∇U∶∇UTÞ�; (B-8)

which corresponds to the potential energy terms of equation 15.

APPENDIX C

IMAGING CONDITIONS FOR ORTHORHOMBIC
AND VERTICAL TRANSVERSE ISOTROPICMEDIA

The most general imaging condition for two anisotropic elastic
wavefields Uðx; tÞ and Vðx; tÞ is

IE ¼
X
e;t

½ρ _U · _Vþ ðc∇UÞ∶∇V�: (C-1)

In orthorhombic media, equation C-1 becomes

IE ¼ ρ½ _U1
_V1 þ _U2

_V2 þ _U3
_V3�

þ C11U1;1V1;1 þ C22U2;2V2;2 þ C33U3;3V3;3

þ C12½U1;1V2;2 þ U2;2V1;1�
þ C13½U1;1V3;3 þ U3;3V1;1�
þ C23½U2;2V3;3 þ U3;3V2;2�
þ C44½U2;3V2;3 þ U2;3V3;2 þ U3;2V2;3 þU3;2V3;2�
þ C55½U1;3V1;3 þ U1;3V3;1 þ U3;1V1;3 þU3;1V3;1�
þ C66½U1;2V1;2 þ U1;2V2;1 þ U2;1V1;2 þU2;1V2;1�;

(C-2)

where Cij for i; j ¼ f1; 2; 3g are the stiffness coefficients in Voigt
notation, Ui;j or Vi;j represents the jth derivative of the ith compo-
nent from the wavefieldU orV. In wavefield imaging, the density of
the medium ρðxÞ is often unknown; therefore, we can rewrite equa-
tion C-2 without the density term as

IE ¼ _U1
_V1 þ _U2

_V2 þ _U3
_V3

þ A11U1;1V1;1 þ A22U2;2V2;2 þ A33U3;3V3;3

þ A12½U1;1V2;2 þ U2;2V1;1�
þ A13½U1;1V3;3 þ U3;3V1;1�
þ A23½U2;2V3;3 þ U3;3V2;2�
þ A44½U2;3V2;3 þ U2;3V3;2 þ U3;2V2;3 þ U3;2V3;2�
þ A55½U1;3V1;3 þ U1;3V3;1 þ U3;1V1;3 þ U3;1V3;1�
þ A66½U1;2V1;2 þ U1;2V2;1 þ U2;1V1;2 þ U2;1V2;1�;

(C-3)

where Aij represents stiffness coefficients normalized by the density
(in velocity squared units).
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For vertical traverse isotropic media, one can reduce the number of
stiffness coefficients by using C22¼C11;C12¼C11−2C66;C23¼C13,
and C44 ¼ C55. Therefore,

IE ¼ ρ½ _U1
_V1 þ _U2

_V2 þ _U3
_V3�

þ C11½U1;1V1;1 þ U2;2V2;2 þU1;1V2;2 þ U2;2V1;1�
þ C33U3;3V3;3

þ C13½U1;1V3;3 þ U3;3V1;1 þU2;2V3;3 þ U3;3V2;2�
þ C55½U2;3V2;3 þ U2;3V3;2 þU3;2V2;3 þ U3;2V3;2

þ U1;3V1;3 þ U1;3V3;1 þU3;1V1;3 þ U3;1V3;1�
þ C66½U1;2V1;2 þ U1;2V2;1 þU2;1V1;2

þ U2;1V2;1 − 2U1;1V2;2 − 2U2;2V1;1�: (C-4)

Using Thomsen’s (1986) parameters and the P- and S-wave velocities
at the symmetry axis, we can rewrite equation C-4 as

IE¼ _U1
_V1þ _U2

_V2þ _U3
_V3

þð1þ2ϵÞv2P0½U1;1V1;1þU2;2V2;2þU1;1V2;2þU2;2V1;1�

þv2P0U3;3V3;3þ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðv2P0−v2S0Þðv2PN −v2S0Þ
q

−v2S0

�

× ½U1;1V3;3þU3;3V1;1þU2;2V3;3þU3;3V2;2�
þv2S0½U2;3V2;3þU2;3V3;2þU3;2V2;3þU3;2V3;2

þU1;3V1;3þU1;3V3;1þU3;1V1;3þU3;1V3;1�
þð1þ2ϵÞv2S0½U1;2V1;2þU1;2V2;1þU2;1V1;2

þU2;1V2;1−2U1;1V2;2−2U2;2V1;1�; (C-5)

where vP0 and vS0 are the P- and S-wave velocities along the sym-
metry axis, vPN is the normal moveout P-wave velocity, and ϵ and γ
are the Thomsen’s parameters.
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